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Online Matching Platforms

Challenges:

• Must organize matching at a massive scale
• Agents have unknown, heterogeneous preferences

Solution? Personalized match recommendations

• Good match recommendations help agents find better matches faster
• But also allow for individual preferences to be expressed

Our focus: How should the platform design match recommendations?
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Match Recommendations as Search

For market participants, finding a match is often a search process:

• agents “meet” potential partners in sequence
• matching requires mutual want between agents

match recommendations ⇐⇒ platform-guided search

Our focus′: How should the platform design search? (Who meets whom?)

The platform’s search design should be:
• informed by data, but also account for uncertainty
• robust to user adaptation in response to the design
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Our Model: Data-driven Search Design

Model:

• Platform has distributional knowledge of preferences via agent types

• Search design = rates at which agents of different types “meet”
• Agents strategically accept/reject potential matches to maximize E(utility)

=⇒ =⇒
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Our Model: Data-driven Search Design

Model:

• Platform has distributional knowledge of preferences via agent types
• Search design = rates at which agents of different types “meet”
• Agents strategically accept/reject potential matches to maximize E(utility)

Platform’s objective: Maximize social welfare generated by the market

Challenges:

• Must handle uncertainty about agent preferences
• Agents can strategically hold out for better matches

• Leads to congestion and cannibalization in the market
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Our Model: Algorithmic Results and Takeaways

Develop efficient 4-approximation algorithm for the search design problem:

• algorithm attains 1/4 of the first-best welfare
• (approximation necessary—even 1.01-approximation is NP-hard)

How does it work? Restrict meetings to submarkets (of types) with simple structure

Takeaway: Through careful search design, platform can induce
equilibrium outcome with almost (socially) optimal welfare
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Related Work

Search and matching. Long history of search in the context of matching markets:
Burdett and Coles (QJE, 1997), Shimer and Smith (Econometrica, 2000),
Adachi (JET, 2003), …. But these works assume random meeting of
agents and do not consider the problem of designing search

Online matching platforms. Rios et al. (EC 2021) empirically study assortment
optimization for online dating; Kanoria and Saban (Manag. Sci., 2021)
study online marketplace design with search frictions; Shi (EC 2020)
studies matchmaking strategies on two-sided matching platforms;
Halaburda et al. (Manag. Sci., 2018) model the effect of restricting
choice; Ashlagi et al. (WINE 2020) study two-sided assortment
optimization with a multinomial logit choice function; …
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Model



Agents, Types, and Dynamics

Continuum model—agents have infinitesimal mass
Each agent has one of finitely many types θ ∈ Θ

Types divided into two sides: Θ = MtW

Agents of type θ enter at exogenous arrival rate αθ

Departure is endogenous—agents either leave:
(a) matched—by entering into a mutually agreed

upon match, or
(b) unmatched—by experiencing a “life event” at

an exogenous (per-agent) rate of δ dt

Each type has a stationary population mass ηθ

from balancing inflows against outflows
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Preferences and Utilities

Agents have random, symmmetric, cardinal utilities determined by their types:

• each pair of types (m,w) ∈ M×W has continuous utility distribution Fmw
• each pair of type m and w agents has shared utility for matching ∼ Fmw
• utility for each pair of agents is drawn independently

Randomness represents idiosyncratic compatibility, unknown to platform

• For each pair of agents, only revealed when they meet

Conversely, assume platform knows distributions Fmw for all (m,w) ∈ M×W

• Platform’s data =⇒ distributional knowledge
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Directed Search

Platform sets rates at which pairs of types meet
• Type θ agents meet type θ′ agents according to
Poisson process of rate λθ(θ′)

Upon pair of type m and w agents meeting, each
sees utility u ∼ Fmw , then accepts/rejects match
• Match (and leave) with utility u iff both accept

Rates λθ(θ
′) subject to feasibility constraints:

(a) capacity constraint: ≤ 1 meeting / unit time∑
θ′

λθ(θ
′) ≤ 1

(b) flow constraint: equal #s of any two types meet

ηmλm(w) = ηwλw(m)
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The Design Problem



The Platform’s Design Problem

Platform sets rates subject to feasibility constraints (capacity + flow)

Feasible choice of rates =⇒ game among agents

• Structural result: unique Nash equilibrium always exists!

Platform optimizes over Nash equilibria of the induced games that are sustainable
in stationary equilibrium

Platform’s objective: maximize social welfare in stationary equilibrium
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The Optimization Program

The resulting platform optimization problem:

max
λθ,τθ,ξθ,ηθ

2 ·
∑
m∈M

∑
w∈W

(
ηmλm(w)

∫
max(τm,τw)

udFmw

)

such that αθ = (δ + ξθ)ηθ (stationarity)

ηmλm(w) = ηwλw(m) (flow)

1 ≥
∑
θ′

λθ(θ
′) (capacity)

ξθ =
∑
θ′

(
λθ(θ

′)

∫ ∞

max(τθ,τθ′ )
dFθθ′

)
(ξθ defn)

τθ =
1

δ + ξθ

∑
θ′

(
λθ(θ

′)

∫ ∞

max(τθ,τθ′ )
udFθθ′

)
(agents’ best response)

λm(w), λw(m) ≥ 0. (nonnegativity of rates)
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Approximation Algorithm



Algorithmic Result

Theorem
The platform can efficiently find a 4-approximately optimal search design.

Welfare of our construction 4-approximates welfare of the first-best outcome

• First best = “planned market” where platform can choose agent strategies

Algorithm sketch: Construct approximately optimal search design in two phases:

1. Solve for the first best. Exactly computing the first-best outcome turns out to
be a computationally tractable problem

2. Approximate first best via star-shaped submarkets. Divide market into
submarkets based on first best; then reintroduce incentives

13
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Phase I: Finding the First Best

1. Relax agent best response constraint
2. Rewrite optimization problem in terms of a
“cutoff” for each pair of types

3. Messy initial optimization problem reduces
to a generalized assignment problem!

• Optimal solution has the structure of a
tree over agent types
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Phase II: Approximation via Star-shaped Submarkets

1. 2-approximate (tree-shaped) first-best solution with star-shaped submarkets
• Akin to Lenstra et al. (Math. Program., 1990), Banerjee et al. (WWW 2017)

2. Re-solve for the first-best solution in each submarket
3. Adjust the new first-best in each submarket into a stationary equilibrium
outcome while losing at most a 2-factor in welfare
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Conclusion



Summary + Takeaways

In this work, we:

• Connected match recommendations to search design for matching markets
• Investigated the challenges of making match recommendations when facing
incomplete knowledge of preferences and strategic agents

• Developed an efficient algorithm to find an approximately optimal search
design for general preference distributions

Takeaway: Through careful search design—which can involve
limiting agents’ choice, the platform can induce equilibrium

outcome with almost (socially) optimal welfare
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