Learning Equilibria in Matching Markets from Bandit Feedback

arxiv.org/abs/2108.08843

Meena Jagadeesan*, Alexander Wei*, Yixin Wang, Michael I. Jordan, and Jacob Steinhardt (UC Berkeley)

Our Contributions

- 1. Develop bandit framework for learning stable outcomes in matching markets
 - Capture learning in markets from noisy feedback
 - Introduce Subset Instability as a learning objective
- 2. Investigate algorithms for learning stable market outcomes
 - Design no-regret algorithms for the learning problem
 - Describe preference structures for which efficient learning is possible

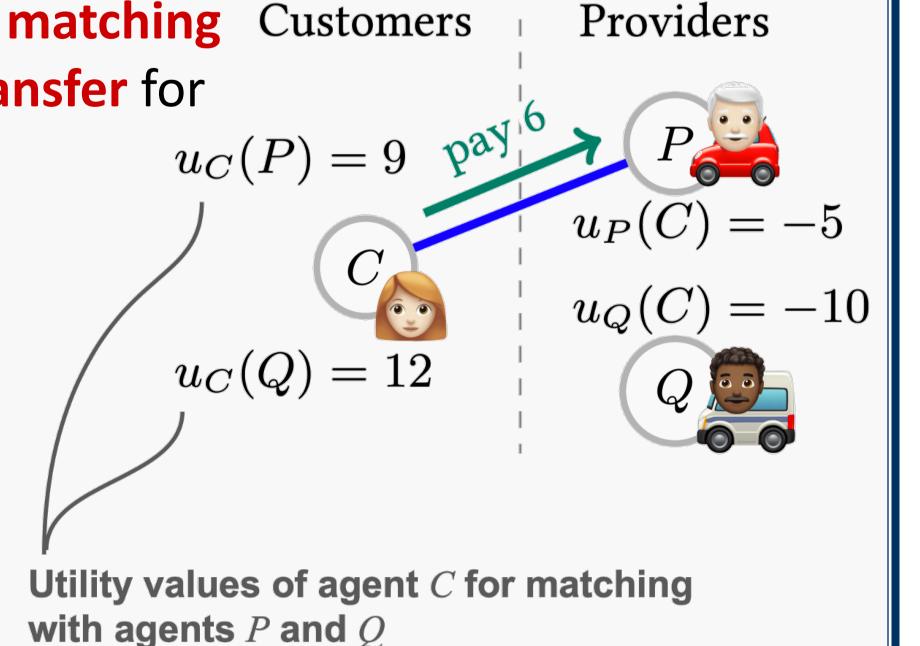
Two-Sided Matching Markets

Matching Markets with Transferable Utilities

Platform selects bipartite matching Customers along with a monetary transfer for each matched pair. $u_C(P) = 9$

Incentive requirement = stability:

- 1. No "blocking" pairs
- 2. Individual rationality



A Framework for Learning Stable Matchings

Feedback Model

Matching + learning takes place over T rounds

In the *t*-th round:

- Agents $I^t \subseteq I, J^t \subseteq J$ arrive to the market
- Platform selects a matching with transfers (μ^t, τ^t)
- Platform observes noisy utilities $u_a(\mu^t(a)) + \varepsilon$ for each agent a

Platform incurs regret equal to instability of the selected outcome

Goal: Minimize cumulative instability over time

Subset Instability: An *Incentive-Aware* Loss Function

The **Subset Instability** of a market outcome (μ, τ) is defined to be:

$$\max_{S \subseteq I \cup J} \left[\left(\max_{\mu' \text{ over } S} \sum_{a \in S} u_a(\mu'(a)) \right) - \left(\sum_{a \in S} u_a(\mu(a)) + \tau_a \right) \right]$$

Interpretation:

Subset instability measures the maximum gain that any "coalition" S of agents could obtain by deviating from the given outcome (μ, τ) and only matching within S

Properties:

- 1. Subset Instability is 0 if and only if (μ, τ) is stable
- 2. Subset Instability \geq the regret vs. welfare-maximizing matching
- 3. Subset Instability is equivalent to the "minimum stabilizing subsidy"
- Shown via duality for an associated linear program

Algorithmic Results

A UCB-Based Algorithm

Theorem (informal). There exists an algorithm that incurs $\tilde{O}(N^{3/2}T^{1/2})$ instance-independent regret with N agents over T rounds.

Algorithm (MatchUCB):

Each round, select stable market outcome with respect to the upper confidence bound estimates of utilities.

This algorithm is optimal up to log factors!

Role of Preference Structure

For worst-case preferences, regret must scale *super-linearly* with the size of the market N.

When can we do better?

We explore two classes of preference structure:

- "Typed" preferences
- "Low-rank" linear preferences

Structure \Rightarrow can obtain $\propto N$ regret or better for each class

Extensions

- 1. $O(\log(T))$ instance-independent regret bounds
- 2. Interpretation of regret in terms of the platform's revenue
- 3. Extension of learning framework to matching without transferable utilities (the Gale-Shapley "stable marriage" setting)